

NELLE SINDROMI LINFOPROLIFERATIVE:

inarrestabile dinamicità

Zanubrutinib è di seconda o terza generazione?

Romano Danesi Università degli Studi di Milano

GENOVA

17 Luglio 2024

NH Collection Genova Marina

Disclosures

Company name	Research support	Employee	Consultant	Stockholder	Speakers bureau	Advisory board	Other
MSD			Х		Х		
Eisai			x		X	X	
AstraZeneca	X		X		Х	Х	
BeiGene					Х		
Janssen	X		X		Х		
Novartis			Х		Х		
Lilly			X		Х		
Incyte			Х		Х		
AB Science			x				

Someone has already given an answer

EXPERT REVIEW OF CLINICAL PHARMACOLOGY 2021, VOL. 14, NO. 11, 1329–1344 https://doi.org/10.1080/17512433.2021.1978288

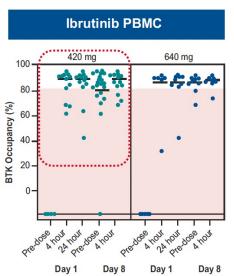
DRUG PROFILE

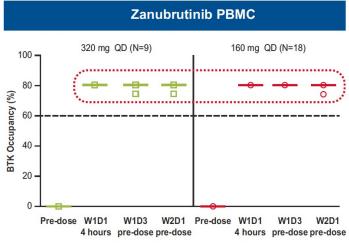
Clinical pharmacology and PK/PD translation of the second-generation Bruton's tyrosine kinase inhibitor, zanubrutinib

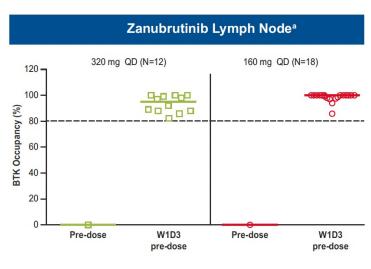
Constantine S. Tam oa,b,c,d, Ying C. Oue, Judith Trotmanf,g and Stephen Opath,i

The challenges of increasing the generation

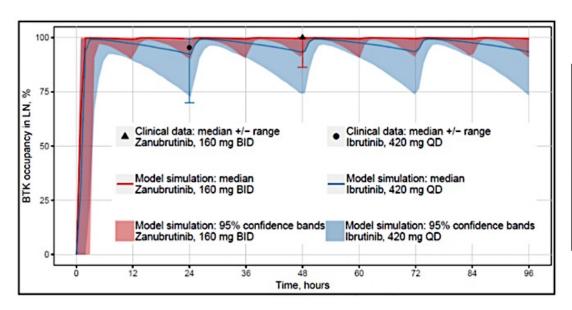
Pharmacodynamics

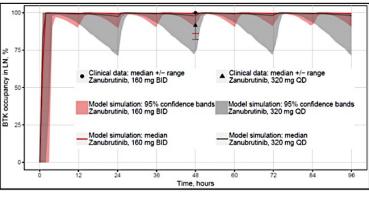

Kinase profiling at concentrations of $100 \times IC_{50}$ based on BTK IC_{50}

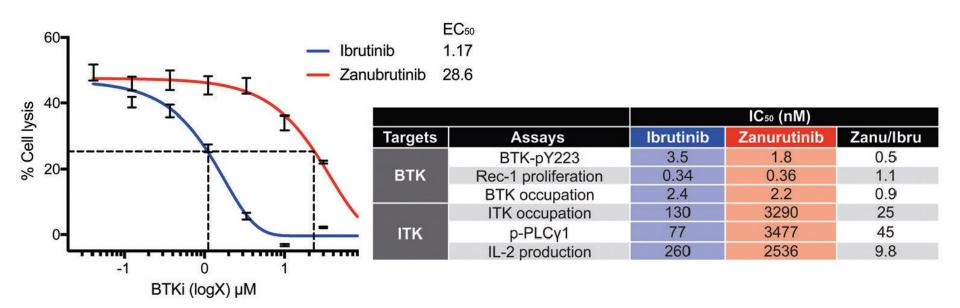

Targets with >50% inhibition are highlighted in red

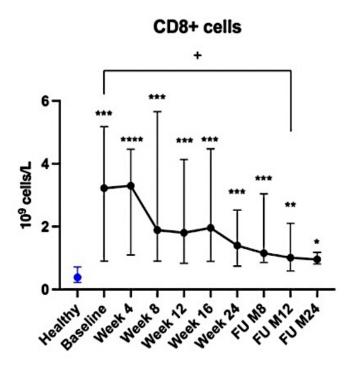

	Zanubrutinib		Ibrutinib		
	71 nM		32 nM		
1	BLK	99.9	BLK	100.2	
2	ERBB4/HER4	99.1	BMX/ETK	99.7	
3	TXK	98.5	ERBB4/HER4	99.5	
4	BMX/ETK	98.1	TXK	98.8	
5	втк	95.1	TEC	98	
6	TEC	79.3	ВТК	97.2	
7	BRK	63.9	FGR	95.7	
8	FGR	53.1	YES/YES1	92.9	
9	EGFR	43.3	LCK	91.2	
10	LCK	40.6	ITK	84.3	
11	YES/YES1	37.1	HCK	93	
12	CSK	28.8	CSK	81	
13	STK33	23.7	EGFR	76.5	
14	BMPR2	22.6	FYN	66.9	
15	AXL	22.4	ERBB2/HER2	61.9	
16	НСК	21.9	SRMS	61	
17	PKCd	20.9	JAK3	58.7	
18	FLT3	20.5	LYN	52.3	
19	MEKK1	20.1	c-Src	46.1	
20	ITK	19.1	FLT3	41.8	
21	MSK2/RPS6KA4	19	BRK	41.6	
22	ERN1/IRE1	17.9	ABL2/ARG	40.4	
23	MNK2	17.8	WNK1	32.5	
24	FRK/PTK5	17.8	MNK2	32.4	

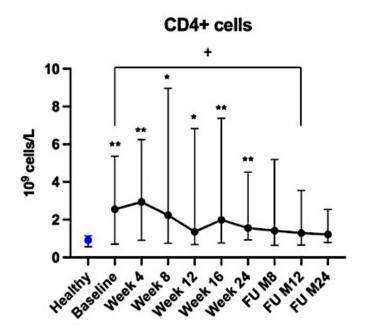
Tam CS et al. Blood Cancer Journal 2023;13:141


Zanubrutinib BTK occupancy in PBMC and in lymph nodes by dose regimens relative to those of ibrutinib



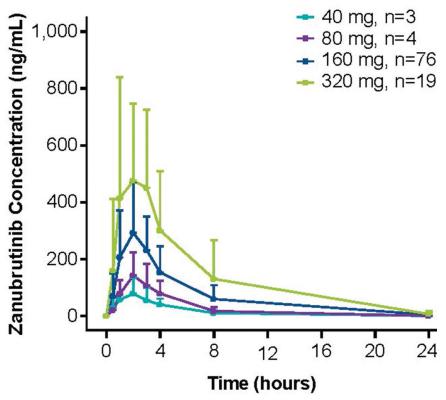

BTK occupancy of zanubrutinib vs ibrutinib and of zanubrutinib 160 mg BID vs. 320 mg QD (systems pharmacology model)



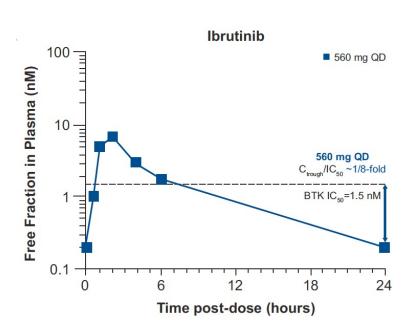

Zanubrutinib spares NK effector function

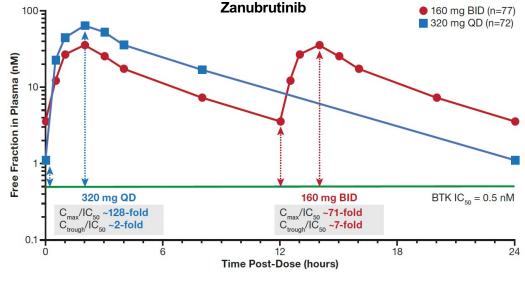
Mino MCL cells and NK92MI cells were co-seeded and treated with vehicle or various concentrations of BTK inhibitors

The reduction of the tumor burden drives changes in the T-cell profile of CLL patients treated with zanubrutinib


The challenges of increasing the generation

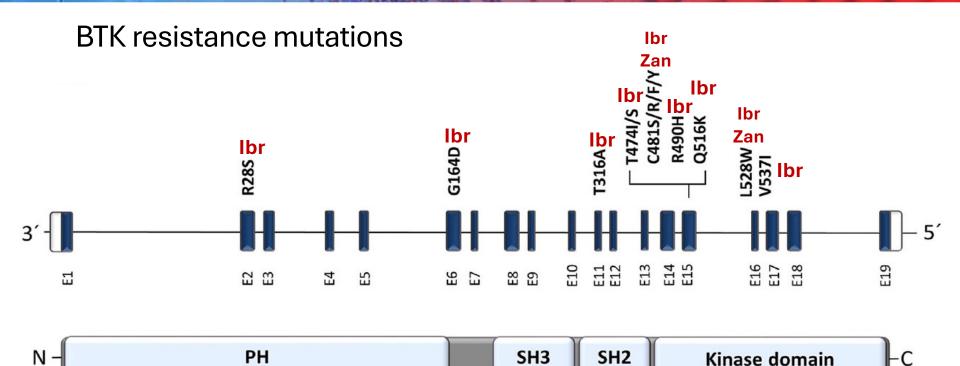
Pharmacokinetics


Pharmacokinetic characteristics


- Zanubrutinib PK properties were unaffected by factors including renal (estimated glomerular filtration rate ≥30 mL/min) and mild/moderate hepatic impairment (Child-Pugh class A or B)
- With appropriate dose reductions, it could be administered with moderate or strong CYP3A inhibitors.
- Zanubrutinib can be administered concurrently with proton pump inhibitors (PPI)/acid-reducing agents without restriction.
- Zanubrutinib has high volume of distribution (approximately 880 L), high AUC/IC50, and half-life of 2-4 h.
- Pharmacokinetics is not saturable

Dose-proportional increase in drug levels

Pharmacokinetics and AUIC of ibrutinib and zanubrutinib


Comparison of PK parameters of BTKi

Parameter	Ibrutinib	Acalabrutinib	Zanubrutinib
Absolute bio- availability	< 10%	25%	45-50% ^b
Half-life	4–13 h	1–2 h	2–4 h
Metabolism	Predominantly via CYP3A	Predominantly via CYP3A	Predominantly via CYP3A
Excretion	Faeces, 80%; urine, < 10%	Faeces, 84%; urine, 12%	Faeces, 87%; urine, 8%

drug.interactions@ospedaleniguarda.it

Resistance mutations

Do they really matter?

214

274

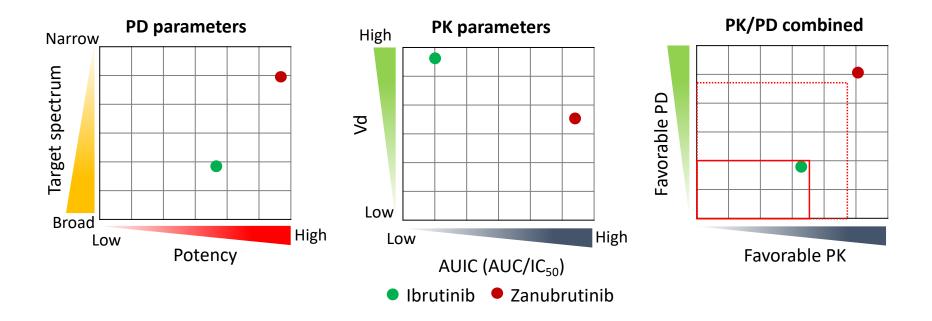
281

377

133

3

655


BTK mutations detected in a cohort of patients with disease progression during BTKi treatment

	Number of patients carrying the mutations			
	Ibrutinib-treated Zanubrutinib-treated patients (n = 24) patients (n =13)		Total	P
Cys481 codon mutations	24	10	34	.03
Leu528Trp	1	7	8	.001

Final considerations

Multiparametric evaluation

PK and PD combined: beyond the boundaries of the second generation?

Conclusions

- Zanubrutinib is a BTK inhibitor with high selectivity and potency.
- First generation BTKi suppresses NK-cell cytotoxicity, most likely due to off-target inhibition of ITK, while zanubrutinib spares NK activity.
- Zanubrutinib has favorable pharmacokinetics.
- Multiparametric pharmacologic assessment suggests that zanubrutinib challenges the limit of second generation BTKi.